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TOWARDS A NON-LINEAR SCHWARZ’S LIST

Philip Boalch

Dedicated to Nigel Hitchin for his 60th birthday

11.1 Introduction

The main theme of this chapter is ‘icosahedral’ solutions of (ordinary) differential
equations, a topic that seems suitable for a 60th birthday conference. We will
however try to go beyond the icosahedron, to see what comes next, and consider
various symmetry groups each of which could be thought of as the next in a
sequence, following the icosahedral group.

To fix ideas let us give a classical example. Recall the icosahedral rotation
group of order 60:

A5
∼= PSL2(F5) ∼= ∆235

∼= 〈 a, b, c
∣∣ a2 = b3 = c5 = abc = 1 〉.

This is described via three generators a, b, and c whose product is the identity,
and so it is natural to look for ordinary differential equations (ODEs) on the
three-punctured sphere P1(C) \ {0, 1,∞} with monodromy group A5. Now A5

is a three-dimensional rotation group so naturally lives in SO3(R) which is a
subgroup of SO3(C) which is isomorphic to PSL2(C). Thus we are led to search
for connections

∇ = d−
(

A1

z
+

A2

z − 1

)
dz, Ai ∈ sl2(C) (11.1)

on rank 2 holomorphic vector bundles over the three-punctured sphere with
projective monodromy group equal to A5.

Such connections are essentially the same as Gauss hypergeometric equations,
and H. Schwarz (1873) classified all such equations having finite monodromy
groups. The list he produced has 15 rows, 1 for the family of dihedral groups,
2 rows for each of the tetrahedral and octahedral groups, and 10 rows for the
icosahedral group (see Table 11.1).

Note added in proof: Lisovyy and Tykhyy have recently announced (arXiv:0809.4873) that
the ‘Non-linear Schwarz’s list’ constructed here is in fact complete.
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Table 11.1. Schwarz’s list:

No. λ′′ µ′′ ν′′ Inhalt

π
Polyeder

aa∗ I 1
2

1
2

ν ν Regelmässige Doppelpyramide

abb II 1
2

1
3

1
3

1
6

= A Tetraeder

bbb III 2
3

1
3

1
3

1
3

= 2A

abg IV 1
2

1
3

1
4

1
12

= B Würfel und Oktaeder

bgg V 2
3

1
4

1
4

1
6

= 2B

abc VI 1
2

1
3

1
5

1
30

= C Dodekaeder und Ikosaeder

bbd VII 2
5

1
3

1
3

1
15

= 2C

bcc VIII 2
3

1
5

1
5

1
15

= 2C

acd IX 1
2

2
5

1
5

1
10

= 3C

bcd X 3
5

1
3

1
5

2
15

= 4C

ddd XI 2
5

2
5

2
5

1
5

= 6C

bbc XII 2
3

1
3

1
5

1
5

= 6C

ccc XIII 4
5

1
5

1
5

1
5

= 6C

abd XIV 1
2

2
5

1
3

7
30

= 7C

bdd XV 3
5

2
5

1
3

1
3

= 10C

Source: From Schwarz (1873).

A key point here is that the Gauss hypergeometric equation is rigid so the full
monodromy representation (of the fundamental group of the three-punctured
sphere into PSL2(C)) is determined by the conjugacy classes of the monodromy
around each of the punctures. Thus in Schwarz’s list it is sufficient to list these
local monodromy conjugacy classes in order to specify the possible monodromy
representations (and from this it is easy to find a hypergeometric equation with
given monodromy). To ease recognition, to the left of the table we have listed the
triples of conjugacy classes which occur, labelling the four non-trivial conjugacy
classes of A5 by a, b, c, and d, representing rotations by 1

2
, 1

3
, 1

5
, and 2

5
of a turn,

respectively. (In the octahedral case one may also have rotations by a quarter of
a turn, which we label by g.)

11.1.1 Naive generalizations

Our basic aim is to discuss three naive generalizations of Schwarz’s list, as follows.
The first two arise simply by looking for non-rigid connections that are natural
generalizations of the hypergeometric connections considered above, obtained by
adding an extra singularity – the two cases are generalizations of two ways one
may view the hypergeometric equation as a connection. First of all we can simply
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add another pole at some point t:

(A) ∇ = d−
(

A1

z
+

A2

z − t
+

A3

z − 1

)
dz, Ai ∈ sl2(C)

and keep the coefficients in sl2(C).
Secondly, we recall that the connection one obtains immediately upon choos-

ing a cyclic vector for the hypergeometric equation is as in (11.1) but with
A1, A2 both rank 1 matrices (in gl2(C)). Then the monodromy group will be
a complex reflection group (generated by two two-dimensional complex reflec-
tions1) and the natural generalization is then to consider connections of the
form

(B) ∇ = d−
(

B1

z
+

B2

z − t
+

B3

z − 1

)
dz, Bi ∈ gl3(C)

with each Bi having rank 1, so the monodromy group will be generated by three
three-dimensional complex reflections. This is a very natural condition as we will
see.

Questions A, B: Find the analogue of Schwarz’s list for connections (A)
or (B).

These questions can now be answered and lead to two ‘non-rigid Schwarz’s
lists’, that is, to classifications of possible monodromy representations with
finite image (up to equivalence) and the construction of connections realizing
such representations. We should emphasize that the main focus has been the
construction of such connections with given monodromy representation for any
value of t (which is a tricky business in this non-rigid case), rather than just the
classification.

Example (of type (B)) . The full symmetry group of the icosahedron is the
icosahedral reflection group of order 120:

H = H3
∼=
〈
r1, r2, r3

∣∣ r2
i = 1, (r1r2)2 = (r2r3)3 = (r3r1)5 = 1

〉
⊂ O3(R) ⊂ GL3(C).

This is generated by three reflections (whose product is not the identity) and
so it is natural to look for connections on rank 3 bundles over a four-punctured
sphere with monodromy H (generated by three reflections about three of the
punctures – that is, connections of the form (B) with each of the three residues
Bi having trace 1

2
so the corresponding reflections are of order 2). There turn out

to be three inequivalent triples of generating reflections of H, two of which are
related by an outer automorphism. The problem is to write down connections

1 That is, arbitrary automorphisms of the form ‘one plus rank 1’, not necessarily of order 2
or orthogonal.
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of the desired form for any value t of the final pole position. One triple of
generating reflections is intimately related to K. Saito’s flat structure (1993)
for H (or icosahedral Frobenius manifold) and appears in Dubrovin’s article
(1995, appendix E). The other two triples were dealt with around 1997: see
Dubrovin and Mazzocco (2000); one is similar to the first case (since related to
it by an outer automorphism) but the final triple turned out to be much trickier,
and writing out the family of connections in this case involved a specific elliptic
curve which took about 10 pages of 40 digits integers to write down (see the
preprint version of op. cit. on the mathematics arxiv). We will eventually see
below that this elliptic solution is in fact equivalent to a solution with a simple
parametrization, agreeing with Hitchin’s philosophy that ‘nice problems should
have nice solutions’.

Remark. Before moving on to the third generalization let us add some other
historical comments. The ‘non-naive’ generalizations of the Gauss hypergeomet-
ric equation are the equations satisfied by the nFn−1 hypergeometric functions
(the Gauss case being that of n = 2). The corresponding Schwarz’s list appears
in Beukers and Heckman (1989). In terms of connections this amounts to consid-
ering connections (11.1) on rank n vector bundles, still with three singularities
on P1, but with A1 of rank n− 1 and A2 of rank 1; these connections are still
rigid.

Some work in the non-rigid case has been done (besides that we will recall
below) by considering generalizations of the hypergeometric equation as an
equation (rather than as a connection); for example, the algebraic solutions of
the Lamé equation were studied in Beukers and van der Waall (2004) (Lamé
equations are basically the second order Fuchsian equations with four singular
points on P1 such that three of the local monodromies are of order 2). In general
connections of type (A) with such monodromy representations will not come
from a Lamé equation (since upon choosing a cyclic vector the corresponding
equations will in general have additional apparent singularities; this can also be
seen by counting dimensions). Indeed it turns out (op. cit.) that Lamé equations
only have finite monodromy for special configurations of the four poles.

11.1.2 Non-linear analogue: the Painlevé VI equation

One reason hypergeometric equations are interesting is that they provide the
simplest explicit examples of Gauss–Manin connections. Indeed this is one reason
Gauss was interested in them: he observed that the periods of a family of elliptic
curves satisfy a (Gauss) hypergeometric equation. (The modern interpretation
of this is as the explicit form of the natural flat connection on the vector bundle
of first cohomologies over the base of the family of elliptic curves, written with
respect to the basis given by the holomorphic one-forms – and their derivatives –
on the fibres.) Nowadays there is still much interest in such linear differential
equations ‘coming from geometry’.



214 Towards a non-linear Schwarz’s list

Thus the non-linear analogue of the Gauss hypergeometric equation should be
the explicit form of the simplest nonabelian Gauss–Manin connection (i.e. the
explicit form of the natural connection on the bundle of first nonabelian coho-
mologies of some family of varieties). The simplest interesting case corresponds
to taking the universal family of four-punctured spheres and taking cohomology
with coefficients in SL2(C) (one needs a non-trivial family of varieties with
nonabelian fundamental groups). This leads to the Painlevé VI equation (PVI),
which is a second-order non-linear differential equation whose solutions, like those
of the hypergeometric equation, branch only at 0, 1,∞ ∈ P1. In particular we
may study the (non-linear) monodromy of solutions of PVI, by examining how
solutions vary upon analytic continuation along paths in the three-punctured
sphere.

Thus, since Schwarz lists fundamental solutions of hypergeometric equations
having finite monodromy, our main question is to construct the analogue of
Schwarz’s list for PVI:

Question C: What are the solutions of Painlevé VI having finite monodromy?
This question is still open; there is as yet no full classification – the main

effort (at least of the present author) has been towards finding and constructing
interesting solutions. So far all known finite-branching solutions are actually
algebraic (cf. Iwasaki 2008). Currently we are at the reasonably happy state of
affairs that all such solutions known to exist have actually been constructed. In
what follows I will explain various aspects of the problem, and in particular show
how the non-rigid lists (A) and (B) map to the list of (C). Some key points,
demonstrating the richness and variety of solutions, are

� There are algebraic solutions of PVI not related to finite subgroups of the
coefficient group SL2(C).

� There are ‘generic’ solutions of PVI with finite monodromy; that is, not
lying on any of the reflection hyperplanes of the affine F4 Weyl group of
symmetries of PVI.

� There are entries on the list of (C) which do not come from either (A)
or (B).

In particular we will see PVI solutions related to the groups A6, PSL2(F7)
and ∆237.

11.2 What is Painlevé VI?

There are various viewpoints, and simply giving the explicit equation is perhaps
the least helpful introduction to it. In brief, Painlevé VI is

� The explicit form of the simplest nonabelian Gauss–Manin connection
� The equation controlling the ‘isomonodromic deformations’ of certain loga-

rithmic connections/Fuchsian systems on P1

� The most general second-order ODE with the so-called ‘Painlevé property’
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� A certain dimensional reduction of the anti-self-dual Yang–Mills equations
(see e.g. Mason and Woodhouse (1996)),

� An equation related to certain elliptic integrals with moving endpoints (cf.
Fuchs (1905) and Manin (1998))

� The second-order ODE for a complex function y(t)

d2y

dt2
=

1
2

(
1
y

+
1

y − 1
+

1
y − t

)(
dy

dt

)2
−
(

1
t

+
1

t− 1
+

1
y − t

)
dy

dt

+
y(y − 1)(y − t)

t2(t− 1)2

(
α + β

t

y2
+ γ

(t− 1)
(y − 1)2

+ δ
t(t− 1)
(y − t)2

)
where α, β, γ, δ ∈ C are constants

The Painlevé property means that any local solution y(t) defined in a disc
in the three-punctured sphere P1 \ {0, 1,∞} extends to a meromorphic function
on the universal cover of P1 \ {0, 1,∞}. It is this property that enables us to
speak of the monodromy of PVI solutions. Concerning solutions there is a basic
trichotomy (see Watanabe (1998)):

A solution of PVI is either

⎧⎪⎨⎪⎩
a ‘new’ transcendental function, or
a solution of a first-order Riccati equation, or
an algebraic function.

In particular if one is interested in constructing new explicit solutions of PVI

then, since the Riccati solutions are all well understood, the algebraic solutions
are the first place to look.

The standard approach to PVI is as isomonodromic deformations of rank 2
logarithmic connections with four poles on P1, as the poles move (generic such
connections are of the form (A), and then t parametrizes the possible pole
configurations). In particular one can see the four constants in PVI directly
in terms of the eigenvalues of the residues of the connection: if we set θi to
be the difference of the eigenvalues (in some order) of the residue Ai (i =
1, 2, 3, 4, where A4 = −∑3

1 Ai is the residue at infinity) then the relation to the
constants is

α = (θ4 − 1)2/2, β = −θ2
1/2, γ = θ2

3/2, and δ = (1− θ2
2)/2.

Before going into more detail let us also mention one further property of PVI:
it admits a group of symmetries isomorphic to the affine Weyl group of type
F4 (see Okamoto (1987) or the exposition in Boalch (2006)). Indeed treating
θ = (θ1, . . . , θ4) ∈ C4 as the set of parameters for PVI is useful since the affine
F4 Weyl group of symmetries acts in the standard way on this C4. (We will see
below that these four parameters may also be interpreted as coordinates on the
moduli space of cubic surfaces.)
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11.2.1 Conceptual approach to Painlevé VI

Consider the universal family of smooth four-punctured rational curves with
labelled punctures. Write B :=M0,4

∼= P1 \ {0, 1,∞} for the base, F for the
standard fibre, and C for the total space:

C ←−−−− F ∼= P1 \ 4 points⏐⏐+
B

Now replace each fibre F by H1(F , G) where G = SL2(C). Here we will use
two viewpoints/realizations of this nonabelian cohomology set H1:

1. Betti: Moduli of fundamental group representations

H1(F , G) ∼= Hom(π1(F), G)/G

2. DeRham: Moduli of connections on holomorphic vector bundles over F
These two viewpoints are related by the Riemann–Hilbert correspondence

(the nonabelian DeRham functor), taking connections to their monodromy
representations. The point is that algebraically these realizations of H1 are very
different and the Riemann–Hilbert map is transcendental (things written in
algebraic coordinates on one side will look a lot more complicated from the
other side).

Thus we get two non-linear fibrations over the base B, with fibres the
DeRham or Betti realizations of H1(F , G), respectively:

MDeRham
Riemann–Hilbert−−−−−−−−−−−→ MBetti⏐⏐+ ⏐⏐+

B B

As in the case with abelian coefficients one still gets a natural connection on
these cohomology bundles. The surprising fact is that it is algebraic on both sides
(approximating the DeRham side in terms of logarithmic connections to give it
an algebraic structure Nitsure 1993). Thus when written explicitly we will get
non-linear algebraic differential equations ‘coming from geometry’. (See Simpson
1994, section 8 for more on these connections in the case of families of projective
varieties.)

The two standard descriptions of the abelian Gauss–Manin connection gen-
eralize to descriptions of this non-linear connection. In the Betti picture we
may identify two nearby fibres of MBetti simply by keeping the monodromy
representations (points of the fibres) constant: moving around in B amounts to
deforming the configuration of four points in P1 and it is easy to see how to
identify the fundamental groups of the four-punctured spheres as the punctures
are deformed – use the same generating loops. This ‘isomonodromic’ description,
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preserving the monodromy representation, is the nonabelian analogue of keeping
the periods of one-forms constant.

On the DeRham side the non-linear connection can be described in terms of
extending a connection on a vector bundle over a fibre F , to a flat connection on
a vector bundle over a family of fibres and then restricting to another fibre, much
as the abelian case is described in terms of closed one-forms (linear connections
replacing one-forms and flatness replacing the notion of closedness).

Each of these descriptions has a use: the DeRham viewpoint lends itself to
giving an explicit form of the non-linear connection (essentially amounting to
the condition for the flatness of the connection over the family of fibres). The
Betti viewpoint is more global and allows us to study the monodromy of the
non-linear connection, as an explicit action on fibres of MBetti.

11.2.2 Explicit non-linear equations

The De Rham bundleMDeRham is well approximated by the space of logarithmic
connections with four poles on the trivial rank 2 holomorphic bundle (with trivial
determinant) over P1. Call the space of such connections M∗ and observe it
parametrizes connections of the form (A), and that these are determined by the
value of t ∈ B and the residues:

M∗ ∼= B ×
{

(A1, . . . , A4)
∣∣ Ai ∈ g,

∑
Ai = 0

}
/G.

Here G = SL2(C) does not act on B and acts by diagonal conjugation on the
residues Ai. In general this quotient will not be well behaved, but it has a natural
Poisson structure and the generic symplectic leaves will be smooth complex
symplectic surfaces. ClearlyM∗ is trivial as a bundle over B (projecting onto the
configuration of poles), but the nonabelian Gauss–Manin connection is different
to this trivial connection and was computed about 100 years ago by Schlesinger
(essentially in the way stated above it seems). The non-linear connection is given
by Schlesinger’s equations, which in the case at hand are

dA1

dt
=

[A2, A1]
t

,
dA3

dt
=

[A2, A3]
t− 1

together with a third equation for dA2/dt easily deduced from the fact that A4

remains constant. If the residues of the connection satisfy these equations then
the corresponding monodromy representation remains constant as t varies. (They
are easily derived from the vanishing of the curvature of the ‘full’ connection
d−

(
A1

dz
z + A2

dz−dt
z−t + A3

dz
z−1

)
.)

To get from here to PVI one chooses specific functions x, y on M∗ which
restrict to coordinates on each generic symplectic leaf and writes down the
connection in these (carefully chosen) coordinates (see Boalch 2005, pp.199–200
for a discussion of the formulae, which are from Jimbo and Miwa 1981). This
leads to two coupled non-linear first-order equations, and eliminating x leads
to the second-order Painlevé VI equation for y(t). It was first written down in
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full generality by R. Fuchs (1905) (whose father L. Fuchs was also the father of
‘Fuchsian equations’).

11.2.3 Monodromy of Painlevé VI

Since the Betti and DeRham realizations are analytically isomorphic, we see
the monodromy of solutions to PVI thus corresponds to the monodromy of the
connection on MBetti. This amounts to an action of the fundamental group of
the base B on a fibre, and this action can be described explicitly.

LetMt = Hom(π1(P1 \ {0, t, 1,∞}), G)/G be the fibre ofMBetti at some fixed
point t ∈ B. The key point is that π1(B) ∼= F2 (the free nonabelian group on
two generators) may be identified with the pure mapping class group of the four
punctured sphere P1 \ {0, t, 1,∞}. As such it has a natural action on Mt (by
pushing forward loops generating the fundamental group), and this action is the
desired monodromy action.

Explicitly, upon choosing appropriate generating loops of π1(P1 \ {0, t, 1,∞})
we see Mt may be described directly in terms of monodromy matrices:

Mt
∼=
{

(M1, . . . , M4)
∣∣ Mi ∈ G, M4 · · ·M1 = 1

}
/G

which in turn is simply the quotient G3/G of three copies of G by diagonal
conjugation by G = SL2(C). In fact this quotient has been studied classically:
the ring of G invariant functions on G3 has seven generators and one relation,
embedding the affine quotient variety as a hypersurface in C7. The particular
equation for this hypersurface appears on p. 366 of Fricke and Klein (1897).
The Painlevé VI parameters essentially specify the conjugacy classes of the four
monodromies Mi, and serve here to fibre the six-dimensional hypersurface G3/G
into a four-parameter family of surfaces. Looking at the explicit equation shows
they are affine cubic surfaces. In turn Iwasaki (2002) has recently pointed out
that this family of cubics may be quite simply related to the explicit family of
Cayley (1849) and so contains the generic cubic surface.

The desired action of the free group F2 on the Betti spaces is given by the
squares of the following ‘Hurwitz’ action:

ω1(M1,M2,M3) =
(
M2,M2M1M

−1
2 ,M3

)
ω2(M1,M2,M3) =

(
M1,M3,M3M2M

−1
3

)
.

More explicitly if we consider simple positive loops l1, l2 in B based at 1
2 encircling

0, 1, respectively, then the monodromy of the connection on MBetti around li is
given by ω2

i (with respect to certain generators of π1

(
P1 \

{
0, 1

2 , 1,∞
})

. In turn
it is possible to write this action directly as an action on the ring of invariant
function on G3.
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11.3 Algebraic solutions from finite subgroups of SL2(C)

11.3.1 What exactly is an algebraic solution?

The obvious definition is simply an algebraic function y(t) which solves PVI for
some value of the four parameters. Thus it will be specified by some polynomial
equation

F (y, t) = 0

and a four-tuple θ of parameters. In practice however such polynomials F can
be quite unwieldy and are difficult to transform under the affine Weyl symmetry
group, making it difficult to see if in fact two solutions are equivalent. This leads
to our preferred definition.

Definition. An algebraic solution of PVI is a compact, possibly singular, alge-
braic curve Π together with two rational functions y, t : Π → P1 :

Π
y−−−−→ P1

t

⏐⏐+
P1

such that
� t is a Belyi map (i.e. its branch locus is a subset of {0, 1,∞}).
� y, when viewed as a function of t away from the ramification points of t,
solves PVI for some value of the four parameters.

In principle it is straightforward to go between the two definitions, but in practice
it is useful to look for a good model of Π (and the model given by the closure of
the zero locus of the polynomial F is usually a bad choice).

11.3.2 (A) �→ (C)

Suppose we have a linear connection (A) with finite monodromy. Its monodromy
representation will be specified by a triple (M1,M2,M3) ∈ G3 generating a finite
subgroup Γ ⊂ G (where G = SL2(C) as above). This linear connection specifies
the initial value (and first derivative) of a solution to PVI. This PVI solution will
have finite monodromy, since we know the branching of PVI solutions corresponds
to the F2 action on conjugacy classes of triples in G3, and the orbit through
(M1,M2,M3) will be finite, since the action is within triples of generators of Γ.

Thus we see that finite F2 orbits (in G3/G) correspond to PVI solutions with
a finite number of branches, and the points of such F2 orbits correspond to the
individual branches of the PVI solution. In particular the size of the orbit, the
number of branches, is the degree of the map t : Π → P1. (Indeed the F2 action
on such a finite orbit itself gives the full permutation representation of the Belyi
map t : Π→ P1, and in particular, by the Riemann–Hurwitz formula, determines
the genus of the ‘Painlevé curve’ Π.)
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Said differently it is useful to define a topological algebraic PVI solution (or
henceforth for brevity a topological solution) to be a finite F2 orbit in G3/G. (The
classification of such orbits is still open and is the main step in classifying all
finite branching PVI solutions.) In these terms the first paragraph above points
out that one obtains ‘obvious’ topological solutions upon taking any triple of
generators of any finite subgroup of G.

For example (omitting discussion of how they were actually constructed), here
are some solutions corresponding to certain triples of generators of the binary
tetrahedral and octahedral subgroups, due to Dubrovin (1995) and Hitchin
(2003) (in different but equivalent forms):

Tetrahedral solution of degree 3

y =
(s− 1)(s + 2)

s(s + 1)
, t =

(s− 1)2(s + 2)
(s + 1)2(s− 2)

, and θ = (2, 1, 1, 2)/3,

Octahedral solution of degree 4

y =
(s− 1)2

s(s− 2)
, t =

(s + 1)(s− 1)3

s3(s− 2)
, and θ = (1, 1, 1, 1)/4.

In both cases Π is a rational curve (with parameter s). Although written in
this compact form, one should bear in mind these formulae represent a whole
(isomonodromic) family of connections (A) as t varies. An explicit elliptic
solution appears in Hitchin (1995a) and may be written as

Elliptic dihedral solution

y =
(3 s− 1)

(
s2 − 4 s− 1

) (
s2 + u

)
(s (s + 2)− u)

(3 s3 + 7 s2 + s + 1) (s2 − u) (s (s− 2) + u)
,

t =

(
s2 + u

)2 (s (s + 2)− u) (s (s− 2)− u)

(s2 − u)2 (s (s + 2) + u) (s (s− 2) + u)
,

where the pair (s, u) lives on the elliptic curve u2 = s
(
s2 + s− 1

)
and θ =

(1, 1, 1, 1)/2. This solution has degree 12 and corresponds to a triple of generators
of the binary dihedral group of order 20.

It turns out (see Boalch 2006a, remark 16) that the icosahedral solutions of
Dubrovin and Mazzocco (2000) fit into this framework as well and correspond to
(certain) triples of generators of the binary icosahedral group, although in the
first instance they arose from the icosahedral reflection group as described earlier.
Note that remark 0.1 of Dubrovin and Mazzocco (2000) describes a relation
between their solutions of PVI and a certain folding of Schwarz’s list; this is
different to the relation just mentioned – in particular problem (A) demands an
extension of Schwarz’s list.
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11.4 Beyond Platonic Painlevé VI solutions

My starting point in this project was simply the observation that there should
be more algebraic solutions to PVI than those coming from finite subgroups
of SL2(C). Dubrovin (1995) had shown how to relate three-dimensional real
orthogonal reflection groups to a certain one-parameter family of the full four-
dimensional family of PVI equations (namely, the family having parameters
θ = (0, 0, 0, ∗)) and this was used in Dubrovin and Mazzocco 2000 to classify alge-
braic solutions having parameters in this one-parameter family. (Some aspects
of op. cit. were subsequently extended by Mazzocco 2001 to classify rational
solutions – i.e. those with only one branch, cf. also Yuan and Li 2002.) The
further observation was that if one is able to get away from the orthogonality
condition here then one will relate any PVI equation to a three-dimensional
complex reflection group.

Theorem 11.1 (Boalch 2003, 2005) The isomonodromic deformations of
type (B) connections (on rank 3 vector bundles) are also controlled by the
Painlevé VI equation, and all PVI equations arise in this way.

Thus a solution to PVI can also be viewed as specifying an isomonodromic
family of rank 3 Fuchsian connections. It turns out that the formulae to go from
a PVI solution y(t) to such an isomonodromic family are more symmetrical than
in the previous case (type (A)) so we will recall them here. (For the analogous
formulae for (A) see Jimbo and Miwa 1981 and in Harnad’s dual picture –
the formula for which should be compared to that below – see Harnad 1994
and also Mazzocco 2002, which was kindly pointed out by the referee.) First
the parameters: let λi = Tr(Bi) for i = 1, 2, 3 and let µi be the eigenvalues, in
some order, of B1 + B2 + B3 (which is minus the residue at infinity), so that∑

λi =
∑

µi.

Theorem 11.2 (Boalch 2006b) If y(t) solves Painlevé VI with parameters θ
where

θ1 = λ1 − µ1, θ2 = λ2 − µ1, θ3 = λ3 − µ1, and θ4 = µ3 − µ2,

and we define x(t) via

x =
1
2

(
(t− 1)y′ − θ1

y
+

y′ − 1− θ2

y − t
− t y′ + θ3

y − 1

)
then the family of logarithmic connections (B) will be isomonodromic as t varies,
where

B1 =

⎛⎝λ1 b12 b13

0 0 0
0 0 0

⎞⎠ , B2 =

⎛⎝ 0 0 0
b21 λ2 b23

0 0 0

⎞⎠ , and B3 =

⎛⎝ 0 0 0
0 0 0

b31 b32 λ3

⎞⎠
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b12 = λ1 − µ3y + (µ1 − xy)(y − 1), b32 = (µ2 − λ2 − b12)/t,

b13 = λ1t− µ3y + (µ1 − xy)(y − t), b23 = (µ2 − λ3)t− b13,

b21 = λ2 +
µ3(y − t)− µ1(y − 1) + x(y − t)(y − 1)

t− 1
, b31 = (µ2 − λ1 − b21)/t.

The implication of this for algebraic solutions should now be clear: the mon-
odromy of a PVI solution is also described by an action of the free group F2 on
(conjugacy classes of) triples of three-dimensional complex reflections (r1, r2, r3)
(with the same formula as before, just replace Mi by ri). Thus in this context the
‘obvious’ topological solutions (i.e. finite F2 orbits) come from taking a triple of
generating reflections of a finite complex reflection group in GL3(C). Such finite
complex reflection groups were classified by Shephard and Todd (1954) and apart
from the familiar real orthogonal reflection groups there is an infinite family plus
four exceptional complex groups, the Klein reflection group (of order 336, a two-
fold cover of Klein’s simple group isomorphic to PSL2(F7) ↪→ PGL3(C)), two
Hessian groups, and the Valentiner group (of order 2,160, a six-fold cover of
A6 ↪→ PGL3(C)).

The infinite family of groups and the two Hessian groups do not seem to
lead to interesting new solutions, but by computing the F2 orbits (determining
the topology of Π) it is easy to see that the Klein group yields a genus 0
degree 7 solution and the Valentiner group has three inequivalent triples of
generating reflections, each leading to genus 1 solutions with degrees 15,15,
and 24, respectively. These are new solutions, previously undetected. (The 24
appearing here led to a certain amount of trepidation, given that the 10 page
elliptic solution of Dubrovin and Mazzocco 2000 had degree 18.)

11.4.1 Construction

Of course finding the topological solution is not the same as finding an explicit
isomonodromic family of connections; one needs to solve a family of Riemann–
Hilbert problems inverting the transcendental Riemann–Hilbert map for each
value of t. (Indeed my original plan was to just prove the existence of new
interesting solutions, in Boalch (2003), but a certain stubbornness, and some
inspiration from reading about Klein’s work finding explicit 3× 3 matrices
generating his simple group, convinced us to go further.)

The two main steps in the method we finally got to work are as follows. (This
is a generalization of the method used by Dubrovin and Mazzocco 2000.)

1. Jimbo’s asymptotic formulae. Jimbo (1982) found an exact for-
mula for the leading asymptotics at t = 0 of the branch of the PVI solution
y(t) corresponding to any sufficiently generic linear monodromy representation
(M1,M2,M3). (This formula was obtained by considering the degeneration of
the isomonodromic family of connections (A) as t → 0; in the limit the four-
punctured sphere degenerates into a stable curve with two components, each
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0 1 ∞
B

Figure 11.1 Degeneration to two hypergeometric systems.

with three marked points. The connections (A) degenerate into hypergeometric
systems on each component, with known monodromy (Figure 11.1). Since these
are rigid it is easy to solve their Riemann–Hilbert problems explicitly and this
gives the leading asymptotics of the isomonodromic family and thus of the PVI

solution.)
This is useful for us because, as Jimbo mentions, one may substitute the leading

asymptotics back into the PVI equation to get arbitrarily many terms of the
precise asymptotic expansion of the solution at 0. If the solution is algebraic,
then this is its Puiseux expansion, a sufficient number of terms of which will
determine the entire solution.

It turns out there was a typo in Jimbo (1982), which meant the entire method
did not work (indeed the fact it did not work led to the questioning of Jimbo’s
formula and hence the correction in Boalch 2005). (Note the special parameters
of Dubrovin and Mazzocco 2000 are not covered by Jimbo’s result; rather they
adapted the argument of Jimbo 1982 to their case.)

2. Relating (A) and (B). Since Jimbo’s formula requires a monodromy
representation of a connection of type (A), and we are starting with a triple of
3× 3 complex reflections (the monodromy representation of a connection of type
(B)), the second step is that we need to see how to go between these two pictures
(on both the DeRham and Betti sides of the Riemann–Hilbert correspondence).
This will be described in the following subsection.

11.4.2 Relating connections (A) and (B)

We wish to sketch how to convert a connection (B) on a rank 3 vector bundle
into a connection of the form (A) on a rank 2 bundle. On the other side of the
Riemann–Hilbert correspondence this amounts to an F2-equivariant map from
triples of complex reflections to triples of elements of G = SL2(C) (as in Boalch
2005, section 2).
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Of course the monodromy groups change in a highly non-trivial way under
this procedure. For example, the Klein reflection group becomes the triangle
group ∆237 ⊂ G, which is an infinite group, and the Valentiner group becomes
the binary icosahedral group (leading to an unexpected relation between A6

and A5).
After this procedure was put on the arxiv (Boalch 2005) we learnt (Dettweiler

and Reiter 2007) that it is essentially a case of the middle convolution functor
used by Katz (1996), although our construction using the complex analytic
Fourier–Laplace transform is different from that of Katz (using l-adic methods)
and from the work of Dettweiler and Reiter (2000).

The basic picture which emerges is as follows (see the figure below), and ought
to be better known. It was obtained essentially by a careful reading of Balser,
Jurkat and Lutz (1981), although the basic idea of relating irregular and Fuchsian
systems by the Laplace transform dates back to Birkhoff and Poincaré. (Dubrovin
1995, 1999 used an orthogonal analogue in relation to Frobenius manifolds, also
using Balser, Jurkat, and Lutz 1981. Moreover the top triangle is essentially a
case of ‘Harnad duality’ (Harnad 1994) so for n = 3 we knew we would obtain
all PVI equations.)

The idea is to describe a transcendental map from gln(C) to GLn(C) in two
different ways (the two paths down the left and the right from the top to the
bottom of the figure).

Choose n distinct complex numbers a1, . . . , an and define A0 = diag
(a1, . . . , an). Roughly speaking (on a dense open patch) the left-hand column
arises by defining Ai = EiA (setting to zero all but the ith row of A) and
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constructing the logarithmic connection d−∑ Ai

z−ai
dz having rank 1 residues

at each ai. Then taking the monodromy of this yields n complex reflections ri

(and if bases of solutions are chosen carefully one can naturally define vectors ei

and one-forms αi such that ri = 1 + ei ⊗ αi and that the ei form a basis). Then
the map to GLn(C) is given by taking the product of rn · · · r1 of these reflections,
written in the ei basis.

Now the key algebraic fact, which dates back at least to Killing (1889) (see
Coleman 1989), is that any such product of complex reflection lies in the big cell
of GLn(C) and so may be factored as the product of a lower triangular and an
upper triangular matrix. We write this product as u−1

− hu+ with u± ∈ U± the
unipotent triangular subgroups, and h ∈ H diagonal:

rn · · · r2r1 = u−1
− hu+. (11.2)

Further, although this relation between the reflections and u± looks to be highly
non-linear, one can relate them in an almost linear fashion: the matrix hu+ − u−
is the matrix with entries αi(ej).

On the other hand it turns out that the same map can be defined by taking
the Stokes data of the irregular connection d−

(
A0

z2 + A
z

)
dz. Indeed the map on

the right-hand side generalizes (Boalch 2002) to any complex reductive group
G in place of GLn(C), but only for GLn(C) is the alternative ‘logarithmic’
viewpoint available. Thus u± are also the two Stokes matrices of this irregular
connection (the natural analogue of monodromy data for such connections); the
exact definition is not important here. (The element h is the so-called formal
monodromy, explicitly it is simply exp(2πiΛ) where Λ is the diagonal part of
A.) The two connections are related (see Balser, Jurkat, and Lutz 1981) by
the Fourier–Laplace transform: this is more than just formal, and by relating
bases of solutions on both sides the stated relation between the Stokes and
monodromy data is obtained. (In both cases the resulting element of GLn(C)
is the monodromy around z =∞ in a suitable basis.) In summary we see that
the ‘Betti’ incarnation of the Fourier–Laplace transform is the relation of Killing–
Coxeter.

Now to apply this in the current context we consider the effect of adding a
scalar λ to A ∈ gln(C). On the right-hand side this corresponds to tensoring
the irregular connection by the logarithmic connection d− λdz/z on the trivial
line bundle, and Balser, Jurkat, and Lutz (1981) showed that the Stokes data is
changed only by scaling h by s := exp(2πiλ), fixing u±. On the logarithmic side
this corresponds to a non-trivial convolution operation, changing the monodromy
representation in a non-trivial way. Of course using the Killing–Coxeter identity
we now see precisely how the complex reflections vary. (It is perhaps worth
noting that this scalar shift is essentially the inverse of the spectral parameter
introduced by Killing 1889, p. 20, appearing in the characteristic polynomial of
the Killing–Coxeter matrix (11.2): det(u−1

− shu+ − 1) = det(shu+ − u−).)
If we set n = 3 then the logarithmic connections appearing are of the form

(B), upon taking a1, a2, a3 = 0, t, 1. Then we may choose the scalar shift such
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that the resulting element of GL3(C) has 1 as an eigenvalue. This implies that
the connections are reducible and we can take the irreducible rank 2 sub- or
quotient connection. Projecting to sl2 gives the desired connection of type (A)
(see Boalch 2005). (Note that there is a choice involved here, of which eigenvalue
to shift to 1.)

11.4.3 New solutions

Thus in summary the procedure now is as follows: take a triple of generating
reflections of a finite complex reflection group in GL3(C). Push it down to
the 2× 2 framework using the scalar shift to obtain a triple (M1,M2,M3) of
elements of SL2(C) in an isomorphic F2 orbit. Apply Jimbo’s formula to get the
leading asymptotics of the corresponding PVI solutions at t = 0 on each branch
(i.e. for each triple in the F2 orbit). (Converting the values which arise into
exact algebraic numbers.) Substitute these leading terms back into PVI to obtain
arbitrarily many terms of the Puiseux expansion at 0 of each solution branch.
Use these expansions to determine the polynomial F (y, t) defining the solution
(assuming it is algebraic). Find a parametrization of the resulting algebraic curve
(e.g. using M. van Hoeij’s wonderful Maple algebraic curves package).

For example, for the Klein complex reflection group of order 336 this works
perfectly (Boalch 2005) and the resulting solution is

Klein solution

y = −
(
5 s2 − 8 s + 5

) (
7 s2 − 7 s + 4

)
s (s− 2) (s + 1) (2 s− 1) (4 s2 − 7 s + 7)

,

t =

(
7 s2 − 7 s + 4

)2
s3 (4 s2 − 7 s + 7)2

, and θ = (2, 2, 2, 4)/7

which has 7 branches. One may of course now substitute this back into the
formula of Theorem 11.2 (with λ = (1, 1, 1)/2 and µ = (3, 5, 13)/14) to obtain
an explicit family of logarithmic connections having monodromy equal to the
Klein reflection group generated by reflections (see Boalch 2006b, section 3).

When converted to connections of type (A) these ‘Klein connections’ have
infinite (projective) monodromy group equal to the triangle group ∆237 (cf.
Boalch 2006c, appendix B). On the other hand it turns out (Boalch 2006a) that
for the Valentiner connections, even though they are much trickier to construct
directly, we can still compute immediately that they become connections of type
(A) with binary icosahedral monodromy. They are also inequivalent to those
appearing in the work of Dubrovin and Mazzocco related to the real orthogonal
icosahedral reflection group (which lead to unipotently generated monodromy
with one choice of the scalar shift, but finite binary icosahedral monodromy
with a different choice, cf. Boalch 2006a, remark 16).

Thus it seemed like a good idea to examine precisely what PVI solutions
arise upon taking arbitrary triples of generators (M1,M2,M3) of the binary
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Table 11.2. Icosahedral solutions 11–52

Degree Genus Walls Type Degree Genus Walls Type

11 2 0 2 b2 c2 32 10 0 3 d4

12 2 0 2 b2 d2 33 12 0 0 a b c d
13 2 0 2 c2 d2 34 12 1 1 a b c2

14 3 0 1 b c2 d 35 12 1 1 a b d2

15 3 0 1 b c d2 36 12 1 1 b2 c d
16 4 0 2 a c3 37 15 1 2 b3 c
17 4 0 2 a d3 38 15 1 2 b3 d
18 4 0 2 c3 d 39 15 1 2 b2 c2

19 4 0 2 c d3 40 15 1 2 b2 d2

20 5 0 1 b2 c d 41 18 1 3 b4

21 5 0 2 c2 d2 42 20 1 1 a b2 c
22 6 0 1 b c2 d 43 20 1 1 a b2 d
23 6 0 1 b c d2 44 20 1 3 a2 c2

24 8 0 1 a c2 d 45 20 1 3 a2 d2

25 8 0 1 a c d2 46 24 1 2 a b3

26 9 1 2 b c3 47 30 2 2 a2 b c
27 9 1 2 b d3 48 30 2 2 a2 b d
28 10 0 2 a2 c d 49 36 3 3 a2 b2

29 10 0 2 b3 c 50 40 3 3 a3 c
30 10 0 2 b3 d 51 40 3 3 a3 d
31 10 0 3 c4 52 72 7 3 a3 b

icosahedral group. Thus we looked at all triples of generators and quotiented
by the relation coming from the affine F4 symmetries of PVI. The resulting
table has 52 rows (which is quite small considering there are 26,688 conjugacy
classes of generating triples). The first 10 rows correspond to the 10 icosahedral
rows of Schwarz’s list and thus the projective monodromy around one of the
four punctures is the identity (these correspond to the PVI solution y = t). The
remaining rows are as in Table 11.2 (this is abridged from Boalch 2006a). (Note
that the right notion of equivalence in the linear non-rigid problem (A) seems to
be the ‘geometric equivalence’ of Boalch 2006a, section 4 – however this coincides
with equivalence under the affine F4 Weyl group, in this case.)

Thus there are lots of other icosahedral solutions the largest having genus 7
and 72 branches. (The column ‘Type’ indicates the set of conjugacy classes of
local monodromy of the corresponding connections of type (A), as we marked on
Schwarz’s list. The column ‘Walls’ indicates the number of reflection hyperplanes
for the affine F4 Weyl group that the solution’s parameters θ lie on.) A few of
these solutions had appeared before: those with degree <5 are simple deforma-
tions of previous solutions, solutions 21 and 26 are in Kitaev (2005) and the
Dubrovin–Mazzocco icosahedral solutions are equivalent to those on rows 31,32,
and 41. On the other hand the Valentiner solutions are quite far down the list
on rows 37, 38, and 46.

The above method of constructing solutions using Jimbo’s asymptotic formula
applies only to sufficiently generic monodromy representations but it turns out
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that most of the rows of this table have some representative (in their affine F4

orbit) to which Jimbo’s formula maybe applied (on every branch). Thus we could
start working down the list constructing new solutions. An initial goal was to get
to solution 33: this solution purports to be on none of the reflection hyperplanes
and the folklore was that all explicit solutions to Painlevé equations must lie on
some reflection hyperplane. The folklore was wrong:

‘Generic’ solution/Icosahedral solution 33

y = −9s(s2 + 1)(3s− 4)(15s4 − 5s3 + 3s2 − 3s + 2)
(2s− 1)2(9s2 + 4)(9s2 + 3s + 10)

,

t =
27s5(s2 + 1)2(3s− 4)3

4(2s− 1)3(9s2 + 4)2
, and

θ = (2/5, 1/2, 1/3, 4/5).

So far this looks to be the only example of a ‘classical’ solution of any of
the Painlevé equations that does not lie on a reflection hyperplane (of the
full symmetry group). Apart from being in the interior of a Weyl alcove this
solution is generic in another sense: a randomly chosen triple of generators of
the binary icosahedral group is most likely to lead to it (more of the 26,688
triples of generators correspond to this row than to any other). Notice also that
this solution has type abcd; there is one local monodromy in each of the four
non-trivial conjugacy classes of A5.

At this stage we were approaching solution 41 which we knew took 10 pages
to write down. So we stopped and looked around to see if there were other
interesting (even just topological) solutions. (The tetrahedral and octahedral
cases could all now be fully dealt with Boalch 2006c.)

11.5 Pullbacks

In his 1884 book on the icosahedron (see Klein 1956), Klein showed that all
second-order Fuchsian differential equations with finite monodromy are (essen-
tially) pullbacks of a hypergeometric equation along a rational map f :

In particular (k = 3) all the icosahedral entries on Schwarz’s list may be
obtained by pulling back the ‘235’ hypergeometric equation (on row VI of
Schwarz’s list).
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In our context, an isomonodromic family of connections of type (A) amounts
to a family of Fuchsian equations with five singularities (at 0, t, 1,∞, plus an
apparent singularity at another point y).2 Klein’s theorem says each element of
this family arises as the pullback of the 235 hypergeometric equation along a
rational map, so the family corresponds to a family of rational maps.

Thus finding a PVI solution corresponding to a family of connections (A)
with finite monodromy amounts to giving a certain family of rational maps
f : P1 → P1. To construct such PVI solutions one may try to find such families
of rational maps, such that each map pulls back a hypergeometric equation to
an equation with the right number of singular points – or to one that can be
put in this form after using elementary transformations to remove extraneous
apparent singularities. (This is not straightforward; e.g. given a finite monodromy
representation of a connection (A) it is not immediate even what degree such a
map f will have.)

An important further observation (due to C. Doran 2001 and A. Kitaev 2002)
is that any such family of rational maps will lead to algebraic solutions of Painlevé
VI regardless of whether or not the hypergeometric equation being pulled back
has finite monodromy (provided the equation upstairs has the right number of
poles); the algebraicity follows from that of the family of rational maps.

Andreev and Kitaev (2002); Kitaev (2002, 2005) have used this to construct
some PVI solutions, essentially by starting to enumerate all such rational maps
(this leads to a few new solutions, but most in fact turn out to be equivalent to
each other or to ones previously constructed – see Section 11.7).

On the other hand, Doran had the idea that interesting PVI solutions should
come from hypergeometric equations with interesting monodromy groups. Thus
(amongst other things) Doran (2001) studied the possible hypergeometric equa-
tions with monodromy a hyperbolic arithmetic triangle group which may be
pulled back to yield PVI solutions. Indeed in Doran (2001, corollary 4.6), he
lists such possible triangle groups and the degrees and ramification indices of
the corresponding rational maps f , although no new solutions were actually
constructed. We picked up on this thread in Boalch (2006c, section 5): it was
found that all but one entry on Doran’s list corresponded to a known explicit
solution (although were perhaps unknown when Doran 2001 was published). The
remaining entry was for a family of degree 10 rational maps f pulling back the
237 triangle group with ramification indices (partitions of 10):

[2, 2, 2, 2, 2], [3, 3, 3, 1], [7, 1, 1, 1]

over 0, 1,∞ (where the hypergeometric system has projective monodromy of
orders 2, 3, and 7, respectively), as well as minimal ramification [18, 2] over
another variable point. As explained in Boalch (2006c) one can get from here to

2 This is the same y appearing in PVI – that is, the function y on the space of connections
(A) is the position of the apparent singularity that appears when the connection is converted
into a Fuchsian equation (Fuchs 1905).
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Figure 11.2 237 degree 10 rational map f .

a topological PVI solution by drawing a picture: we wish to find such a rational
map f topologically – that is, describe the topology of a branched cover f :
P1 → P1 with this ramification data. This may be done by playing ‘join the
dots’ (completely in the spirit of Grothendieck’s Dessins d’Enfants) and yields a
covering figure as required. One figure so obtained is shown in Figure 11.2. (Note
that, in the context of Painlevé equations, the idea of drawing pictures such as
Figure 11.2 first appeared in Kitaev (2005).)

The upper copy of P1 is thus divided into 10 connected components and f
maps each component isomorphically onto the complement of the interval drawn
on the lower P1 (the lines and the vertices upstairs are the preimages of the lines
and vertices downstairs). In particular the figure shows how loops upstairs map to
words in the generators of the fundamental group π1(P1 \ {0, 1,∞}) downstairs.
In this way we can compute by hand the monodromy of the equation upstairs
obtained by pulling back a hypergeometric equation with monodromy ∆237. This
yields the triple:

M1 = caca−1c−1, M2 = c, and M3 = c−1a−1cac

(where a, b, and c are lifts to SL2(C) of standard generators of ∆237 with cba = 1),
which we know a priori lives in a finite F2 orbit. One finds immediately that the
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orbit through the conjugacy class of this triple has size 18 and constitutes a
genus 1, degree 18 topological PVI solution.

Now it turns out that Jimbo’s formula may be applied to every branch of
this solution, and proceeding as before we obtain (Boalch 2006c) the solution
explicitly:

Elliptic 237 solution

y=
1
2
−
(
3 s8−2 s7−4 s6 − 204 s5−536 s4−1738 s3−5064 s2−4808 s−3199

)
u

4 (s6 + 196 s3 + 189 s2 + 756 s + 154) (s2 + s + 7) (s + 1)
,

t =
1
2
−
(
s9 − 84 s6 − 378 s5 − 1512 s4 − 5208 s3 − 7236 s2 − 8127 s− 784

)
u

432 s (s + 1)2 (s2 + s + 7)2
,

where u2 = s (s2 + s + 7) and θ = (2/7, 2/7, 2/7, 1/3). (This solution, or rather
an inequivalent ‘Galois conjugate’ of it, has also been obtained independently
by Kitaev 2006, p. 219 by directly computing such a family of rational maps –
apparently also influenced by Doran’s list.)

11.6 Final steps

11.6.1 Up to degree 24

We now have an example of a degree 18 elliptic solution to Painlevé VI with
a quite simple form. This leads immediately to the suspicion that the 10-page
Dubrovin–Mazzocco solution is just written at a bad value of the parameters.
Indeed using the method we have been ‘tweaking’ while working down the
icosahedral table enables us to guess good a priori choices of the parameters
θ within the corresponding affine F4 equivalence class (row 41 in Table 11.2)
i.e. so that the expression for the polynomial F will be ‘small’. Choosing such
parameters and constructing the solution from scratch at those parameters yields

Theorem 11.3 (Boalch 2006a) The Dubrovin–Mazzocco icosahedral solution
is equivalent to the solution

y =
1
2
− 8 s7 − 28 s6 + 75 s5 + 31 s4 − 269 s3 + 318 s2 − 166 s + 56

18u (s− 1) (3 s3 − 4 s2 + 4 s + 2)
and

t =
1
2
+

(s +1)
(
32 (s8+1)− 320 (s7+s)+1112 (s6+s2)− 2420 (s5+s3) + 3167 s4

)
54u3 s (s− 1)

on the elliptic curve

u2 = s (8 s2 − 11 s + 8)

with θ = (1, 1, 1, 1)/3. In particular this elliptic curve is birational to that defined
by the 10-page polynomial.
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Substituting this into the formula of Theorem 11.2 with λ = (1, 1, 1)/2 and µ =
(1, 3, 5)/6 now gives explicitly the third (and trickiest) family of connections of
type (B) with monodromy the icosahedral reflection group.

This can be pushed further with more tweaking to get up to degree 24 (row
46 in Table 11.2), that is, to obtain the largest Valentiner solution (Boalch
2006a) (the main further tricks used are described in (Boalch 2006c, appen-
dix C). In particular this finishes the construction of all elliptic icosahedral
solutions. Intriguingly, one finds that the resulting elliptic icosahedral Painlevé
curves Π become singular only on reduction modulo the primes 2, 3, and 5
(except for rows 44 and 45 – we will see another reason in the following
subsection that these are abnormal). Similarly the elliptic Painlevé curve related
to the 237 triangle group becomes singular only on reduction modulo 2, 3,
and 7.

11.6.2 Quadratic/Landen/folding transformations

Now the happy fact is that the remaining icosahedral solutions may be obtained
from earlier solutions by a trick, first introduced in the context of PVI by Kitaev
(1991) and a simpler equivalent form was found by Ramani, Grammaticos, and
Tamizhmani (2000). Manin (1998) refers to some equivalent transformations as
Landen transformations. (Landen has clear precedence since the original Landen
transformations were rediscovered by Gauss!) Tsuda, Okamoto, and Sakai (2005)
call them folding transformations.

In any case the basic idea is simple: if one has a connection (A) with two
local projective monodromies of order 2 (say at 0,∞) then one can pull it back
along the map z �→ z2 and obtain a connection with only apparent singularities
at 0,∞ (which can be removed) and four genuine singularities. This can be
normalized into the form (A), and the key point is that this works in families and
maps isomonodromic deformations of the original connections to isomonodromic
deformations of the resulting connections – that is, it transforms certain solutions
of PVI into different, generally inequivalent, solutions. Of course this is not a
genuine symmetry of PVI since special parameters are required, but it is precisely
what is needed to construct the remaining solutions.

Indeed observe that each of the rows of the icosahedral table with degree >24
have type a2ξη for some ξ, η ∈ {a, b, c, d} – that is, they have two projective
monodromies of order 2. Pulling back along the squaring map will transform the
corresponding connections into connections of type ξ2η2. It turns out (in this
icosahedral case) the corresponding PVI solutions have half the degree, and we
obtain an algebraic relation between the solutions. This program is carried out
in Boalch (2007) and the remaining icosahedral solutions are obtained (see also
Kitaev and Vidūnas 2007). (Notice also that the elliptic solutions on rows 44 and
45 are related in this way to earlier, genus zero solutions.) For example, in Boalch
(2007) we found an explicit equation for the genus 7 algebraic curve naturally
attached to the icosahedron, on which the largest (degree 72) icosahedral solution
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is defined: it may be modelled as the plane octic with affine equation

Genus 7 icosahedral Painlevé curve

9 (p6 q2 + p2 q6) + 18 p4 q4+

4 (p6 + q6) + 26 (p4 q2 + p2 q4) + 8 (p4 + q4) + 57 p2 q2+

20 (p2 + q2) + 16 = 0.

11.7 Conclusion

Thus in conclusion we have filled in a number of rows of what could be called
the non-linear Schwarz’s list. Whether or not there will be other rows remains
to be seen. So far this list of known algebraic solutions to PVI takes the following
shape (we will use the letters d and g to denote the degree and genus of solutions,
and consider solutions up to equivalence under Okamoto’s affine F4 symmetry
group. Some non-trivial work has been done to establish which of the published
solutions are equivalent to each other and which were genuinely new). See also
Boalch (2006d).

First there are the rational solutions (d = 1), studied by Mazzocco (2001)
and Yuan and Li (2002), which fit into the set of Riccati solutions classified by
Watanabe (1998). (Beware that ‘rational’ here means the solution is a rational
function of t, which implies, but is by no means equivalent to, having a rational
parameterization.)

Then there are three continuous families of solutions g = 0, d = 2, 3, 4.
The degree 2 family is y =

√
t which, as one may readily verify, solves PVI

for a family of possible parameter values. Similarly the degree 3 tetrahedral
solution, and the degree 4 octahedral and dihedral solutions (of Dubrovin 1995
and Hitchin 1995a, 2003) fit into such families, as discussed in Ben Hamed and
Gavrilov (2005); Boalch (2006a) and Cantat and Loray (2007). In general in
such a family y(t) may depend on the parameters of the family. Ben Hamed
and Gavrilov (2005) showed that any family with y(t) not depending on the
parameters is equivalent to one of the above cases and recently Cantat and Loray
(2007) showed that any solution with two, three, or four branches is in such
family.

Next there is one discrete family (d, g unbounded, θ = (0, 0, 0, 1) ∼
(1, 1, 1, 1)/2). Indeed this PVI equation was solved completely by Picard (1889,
p. 299), Fuchs (1905), and in a different way by Hitchin (1995b). Algebraic
(determinantal) formulae for the algebraic solutions amongst these appear in
Hitchin (1995a), using links with the Poncelet problem – in this framework they
are dihedral solutions (controlling connections of type (A) with binary dihedral
monodromy).

Finally there are 45 exceptional solutions, which collapse down to 30 if we
identify solutions related by quadratic transformations. The possible genera are
0, 1, 2, 3, 7, and the highest degree is 72. Of these 30 solutions 7 have previously
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appeared: 1 is due to Dubrovin (1995), 2 to Dubrovin and Mazzocco (2000), and
4 to Kitaev (3 in Kitaev 2005, plus – in Kitaev 2006 – a Galois conjugate of
the elliptic 237 solution already mentioned). Two of these exceptional solutions
are octahedral, 1 is the Klein solution, 3 are the elliptic 237 solution (and its 2
Galois conjugates), and the remaining 24 are icosahedral.
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common solution. Int. Math. Res. Not. No. 60, 3727–52. math/0507002.

Beukers, F. and Heckman, G. (1989). Monodromy for the hypergeometric function
nFn−1. Invent. Math. 95(2), 325–54.

Beukers, F. and van der Waall, A. (2004). Lamé equations with algebraic solutions. J.
Differential Equations 197(1), 1–25.

Boalch, P. P. (2002). G-bundles, isomonodromy and quantum Weyl groups. Int. Math.
Res. Not. No. 22, 1129–66, math.DG/0108152.
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London Math. Soc. 90(3), no. 3, 167–208, math.AG/0308221.

Boalch, P. P. (2006a). The fifty-two icosahedral solutions to Painlevé VI. J. Reine
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